
Deep Learning: Essential Notes

November 12, 2025

Deep Learning: Essential Notes November 12, 2025 1 / 26

Slide 1: Nodes, Edges, and Sum/Activation

x1

x2

x3

∑
f y

w
1

w2

w3

b

z

Activation: sum of the connected edges satisfies a
threshold (know as activation fucntion), this
activates the neuron at the next layer
Minimise cost value:
Back-prograpation

Weighted sum:

z =
3∑

i=1

wixi + b = w>x + b

Activation:

y = f (z) (e.g., ReLU, σ, tanh)

Key pieces:

Nodes: inputs/neurons

Edges: weights wi

Bias: b

Activation: nonlinearity f (·)

Deep Learning: Essential Notes November 12, 2025 2 / 26

Slide 2: The Three General Layers

Input layer Hidden layer

Output layer

Input layer: raw features x

Hidden layers: learn internal representations
via nonlinear units

Output layer: task-specific mapping (class
scores, regression)

Forward pass:

h = f (W1x + b1), y = g(W2h + b2)

Deep Learning: Essential Notes November 12, 2025 3 / 26

Slide 3: Perceptron Visual and Prediction Steps

x1

x2

x3

∑
step ŷ ∈ {0, 1}

w
1

w2

w3

b

z

step 1: imputs are fed to into processor
step 2: peceptron aplies weiht to estiamte
output
step 3: perceptron computes error
step 4: perceptron adjusts error by back
propagation
step 5: repeat 1-4 until desired model accuracy

Prediction steps:

1 Take inputs x.

2 Compute z = w>x + b.

3 Apply step: ŷ = 1[z ≥ 0].

4 Return class label (e.g. 1 = positive, 0 =
negative).

Decision boundary:

w>x + b = 0

Deep Learning: Essential Notes November 12, 2025 4 / 26

Slide 4: MLP Example Political Influence (Visual Only)

Hashtag freq. (politics)

Sentiment score

Topic prob. (politics)

Retweet rate

Follower/Following

Network centrality

Conservative

Democrat

Deep Learning: Essential Notes November 12, 2025 5 / 26

Slide 5: MLP Classification vs Regression (At a Glance)
Aspect Classification MLP Regression MLP

Target & Output Discrete classes; output layer
= sigmoid (binary) or soft-
max (multi-class)

Continuous value(s); output
layer = linear (identity)

Loss Binary/multi-class cross-
entropy

MSE / MAE / Huber

Common Metrics Accuracy, F1, Preci-
sion/Recall, AUC

RMSE, MAE, R2

Typical Features
(examples)

Counts/frequencies,
TFIDF/topic probs, network
stats, categorical dummies,
normalized numeric signals

Scaled numerics, engineered
ratios, moving averages,
lagged values, interaction
terms, splines/bins

Output Interpreta-
tion

Class probabilities (confi-
dence)

Point estimate (with optional
intervals)

Last-layer Activa-
tion

Sigmoid / Softmax Identity

Deep Learning: Essential Notes November 12, 2025 6 / 26

Slide 7: Activation Functions Shapes & When to Use
Sigmoid σ(z) =

1

1 + e−z

Purpose:
Map to (0, 1) for probabilities (binary outputs). Can
saturate/vanish.

Tanh tanh(z)

Purpose: Zero-centered activations; useful in shallow
nets; still saturates.

Identity f (z) = z

Purpose:
Linear output for regression (last layer).

ReLU max(0, z)

Purpose:
Default for hidden layers; sparse/fast; beware dead
neurons.

Leaky ReLU max(αz, z) (e.g. α = 0.01)

Purpose:
Fix ReLU dead units with small negative slope.

Softmax softmaxk (z) =
ezk∑
j e

zj

Purpose:
Turn logits into class probabilities (multi-class outputs).

Deep Learning: Essential Notes November 12, 2025 7 / 26

Slide 6: MLP Model Components

Data pipeline

Preprocess: cleaning, normalization/standardization

Train/validation/test split; batching and shuffling

Architecture

Layer sizes, depth, activation functions

Regularization: dropout, weight decay, batch norm

Optimization

Loss (BCE/MSE), optimizer (SGD/Adam), learning rate schedule

Early stopping, checkpoints

Evaluation

Metrics (task-specific), error analysis, robustness checks

Deep Learning: Essential Notes November 12, 2025 8 / 26

Slide 7: Typical Activation Functions (with sketches)

Sigmoid σ(z) =
1

1 + e−z

Tanh tanh(z)

Identity f (z) = z (regression)

ReLU max(0, z)

Leaky ReLU max(αz , z)

Softmax (multi-class output)

softmaxk(z) =
ezk∑
j e

zj

Deep Learning: Essential Notes November 12, 2025 9 / 26

Slide 8: Effect of Bias in a Neuron
Purpose: The bias allows a neuron to shift its activation threshold, enabling more flexible decision
boundaries.

Without Bias: y = f (wx)

x

y

ReLU: f (wx)

Activates

at x = 0 decision boundary fixed at origin.

With Bias: y = f (wx + b), here b = +1.5

threshold

x

y

ReLU: f (wx + b)

Activation

threshold shifts left; decision boundary moves.

Key Takeaway

Without bias: all activations/lines pass through origin limited flexibility.

With bias: neurons can learn thresholds and offsets more expressive model.

Deep Learning: Essential Notes November 12, 2025 10 / 26

Agenda

1 Typical CNN workflow (data features classifier)

2 What is a convolution? Padding, stride, and why odd kernels

3 Max pooling: purpose and effect

4 Build a tiny CNN for MNIST

5 Your code: line-by-line concepts

6 Parameter counts, shapes, and sanity checks

7 (Optional) Feature maps visualization tips

Deep Learning: Essential Notes November 12, 2025 11 / 26

Typical CNN Workflow

1 Data prep: load images, normalize to [0, 1], set
shape (H,W , channels).

2 Convolutions: learn local patterns (edges, strokes)
with shared kernels.

3 Pooling: downsample, keep strongest activations,
add translational tolerance.

4 Flatten/Global pooling: convert feature maps to
vectors.

5 Dense + Softmax: map features to class
probabilities.

6 Train/Evaluate: choose loss/metrics, iterate for
few epochs.

MNIST specifics

Grayscale digits: 28× 28× 1

10 classes (0–9)

Simple dataset: two conv blocks
often suffice

Deep Learning: Essential Notes November 12, 2025 12 / 26

What is a Convolution?

A kernel (e.g., 3× 3) slides over the image. Each output pixel is a weighted sum of a
local neighborhood.

For one channel: ((I * K)(i,j) =
r∑

u=−r

r∑
v=−r

K (u, v); I (i + u, j + v)),wherer= k−1
2 for odd

k .

With C input channels, each filter has k × k × C weights +1 bias; outputs one feature
map. Using F filters yields F maps.

Why odd kernels (3,5,7...)?

They have a well-defined center. Padding and alignment stay symmetric; gradients are
stable.

Deep Learning: Essential Notes November 12, 2025 13 / 26

Padding and Stride

Padding controls output size:

valid: no padding; H → H − k + 1 (shrinks)
same: zero-pad to keep H and W unchanged

Stride s skips positions (e.g., s = 2 halves spatial size).

Rule of thumb: start with k = (3, 3), stride = 1, padding=same or pooling for
downsampling.

Deep Learning: Essential Notes November 12, 2025 14 / 26

Max Pooling

MaxPooling2D(2× 2): takes the max in each 2× 2 window; reduces size by ≈ 2 in H
and W .

Benefits: translation tolerance, fewer parameters, less overfitting, faster compute.

Analogy (materials): like coarse-grainingkeeping the most prominent response in each
small patch.

Deep Learning: Essential Notes November 12, 2025 15 / 26

CNN Layer Pipeline (Simple Explanation)

Conv → BatchNorm → Pool → Conv → Pool → Flatten →
Dense128 → Dropout → Dense10

Convolution (Conv): Learns patterns (edges, textures).

BatchNorm: Normalizes activations for stable, faster training.

MaxPooling: Downsamples spatial size (position invariance).

Second Conv + Pool: Deeper, more abstract features.

Flatten: Converts 2D maps to a 1D vector.

Dense(128): Combines features into meaning.

Dropout(0.3): Reduces overfitting.

Dense(10): Softmax classifier (10 classes).

Deep Learning: Essential Notes November 12, 2025 16 / 26

RNN Network: How It Differs from a CNN
RNN (Recurrent Neural Network)

Processes data step-by-step over time.

Has hidden state that carries memory.

Good for time-series, sequences, signals.

Output depends on current input + past inputs.

h1 h2 h3

x1 x2 x3

CNN (Convolutional Neural Network)

Processes data spatially (images).

Learns patterns via filters.

Good for images, microstructures, 2D/3D fields.

Output depends on spatial features.

Input Image

Conv + BN + Pool

Flatten

Dense

Deep Learning: Essential Notes November 12, 2025 17 / 26

Comparison: SimpleRNN vs LSTM vs GRU
SimpleRNN

Oldest RNN unit; single state ht .

Struggles on long sequences
(vanishing gradients).

Fast and simple.

h1 h2 h3

LSTM

Two states: hidden ht and cell
ct .

Three gates: input, forget,
output.

Best for long-term dependencies;
heavier.

Forget Input Output

GRU

One state: ht only.

Two gates: reset, update.

Faster than LSTM, similar
performance.

Update Reset

Model States Gates Best For

SimpleRNN ht 0 short patterns
GRU ht 2 medium sequences
LSTM ht , ct 3 long-term patterns

Deep Learning: Essential Notes November 12, 2025 18 / 26

ConvLSTM vs LSTM vs CNN (High-Level Comparison)

Model Input Type What It Learns Use Case

CNN Images (H,W , C) Spatial features Microstructures, images
LSTM Sequences (T , F) Temporal patterns Time-series, signals
ConvLSTM Image sequences (T ,H,W , C) Spatio-temporal features Videos, microstructure evolution

CNN

Processes whole image at once.

Learns patterns in space.

Uses Conv filters + Pooling.

LSTM

Reads one time step at a time.

Memory via hidden state ht .

No spatial structure.

ConvLSTM

CNN + LSTM ideas combined.

Learns both space & time.

Best for evolving microstructures/videos.

Deep Learning: Essential Notes November 12, 2025 19 / 26

LSTM Memory: Hidden State vs Cell State

Hidden State (ht): short-term memory; used for output.

Cell State (ct): long-term memory; carried across timesteps.

Together:
(ht , ct) = LSTM(xt , ht−1, ct−1)

LSTM Cellxt

ht−1

ct−1

ht

ct

Deep Learning: Essential Notes November 12, 2025 20 / 26

RNN Input Shapes: 2D vs 3D
MLP / Dense Layers: 2D Input

(N,F)

N = number of samples

F = number of features

No time dimension

RNN / LSTM / GRU: 3D Input
(N,T ,F)

T = time steps

F = features per timestep

Needed for sequence modeling

Dense Input (N,F) RNN Input (N,T ,F)

Deep Learning: Essential Notes November 12, 2025 21 / 26

Inside an LSTM Cell: Input, Forget, Output Gates

Forget Gate ft : remove old info.

ft = σ(Wf [xt , ht−1] + bf)

Input Gate it : write new info.

it = σ(Wi [xt , ht−1] + bi)

Output Gate ot : expose memory as output.

ot = σ(Wo [xt , ht−1] + bo)

Cell Update

ct = ft · ct−1 + it · c̃t

Forget

Input

Output

xt

ht−1

ht

Deep Learning: Essential Notes November 12, 2025 22 / 26

Generative Adversarial Networks (GANs)

The Generator (G) creates new data (e.g., images) from random noise.

The Discriminator (D) evaluates the data, distinguishing between real samples from the training set and fake
samples produced by the generator.

Both networks are trained in an adversarial setup:

The generator tries to produce data that can fool the discriminator.
The discriminator tries to correctly classify real and fake data.

Training continues until the generator produces data that is indistinguishable from real training samples.

Deep Learning: Essential Notes November 12, 2025 23 / 26

Key Components of a GAN

Generator
Takes a random noise vector (z)
Learns to produce synthetic samples (fake images)
Objective: fool the discriminator

Discriminator
Takes real or generated samples
Outputs probability of being real
Objective: correctly classify real vs fake

Adversarial Framework
Generator and Discriminator compete
Training improves both progressively

Deep Learning: Essential Notes November 12, 2025 24 / 26

Generator and Discriminator Architecture

Generator Network

Input: Noise vector (z), e.g., 100 dimensions

Hidden Layers: Dense + LeakyReLU activations + Batch Normalization (stabilize training
and improve convergence)

Output Layer: 784 units (flattened 28×28 image)

Activation: tanh (outputs in [−1, 1]), suitable for image data

Discriminator Network

Input: Flattened image (784 dimensions)

Hidden Layers: Dense + LeakyReLU

Output Layer: 1 unit (real/fake)

Activation: sigmoid probabiity of likelihood of input image being real

Deep Learning: Essential Notes November 12, 2025 25 / 26

GAN Training Algorithm

1 Generate fake images using the generator by passing random noise as input.

2 Sample real images by selecting a random batch from the training dataset.

3 Concatenate real and fake images to form a combined batch for the discriminator.

4 Create discriminator labels: (Optional)

Real images → 0.9 (one-sided label smoothing)
Fake images → 0

5 Train the discriminator on the combined batch of real and fake images.

6 Generate a new batch of random noise for the generator.

7 Create generator labels: 1 (real), so the generator attempts to fool the discriminator.

8 Train the combined GAN model (generator + frozen discriminator) using the updated noise and the generator
labels.

9 Monitor training by printing discriminator and GAN losses.

10 Repeat for the specified number of iterations. The generator improves at producing realistic images, while the
discriminator gets better at distinguishing real from fake.

11 Final Goal: The generator should create images that are indistinguishable from real data.

latent dim (100) −→ Generator −→ data dim (784)
data dim (784) −→ Discriminator −→ real/fake score

Deep Learning: Essential Notes November 12, 2025 26 / 26

