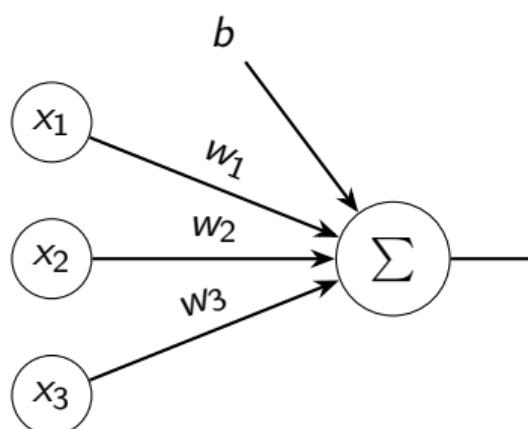


Deep Learning: Essential Notes

November 12, 2025

Slide 1: Nodes, Edges, and Sum/Activation



Activation: sum of the connected edges satisfies a threshold (known as activation function), this activates the neuron at the next layer

Minimise cost value:

Back-propagation

Weighted sum:

$$z = \sum_{i=1}^3 w_i x_i + b = \mathbf{w}^\top \mathbf{x} + b$$

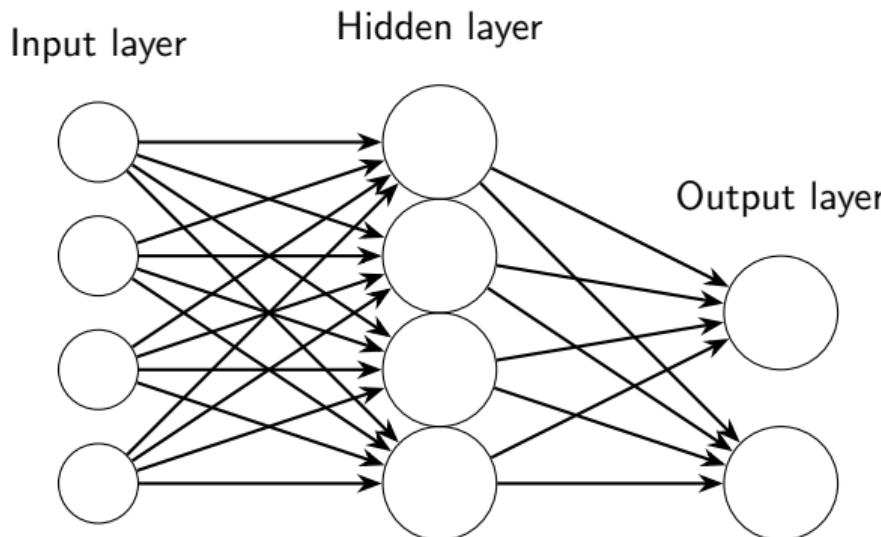
Activation:

$$y = f(z) \quad (\text{e.g., ReLU, } \sigma, \tanh)$$

Key pieces:

- **Nodes:** inputs/neurons
- **Edges:** weights w_i
- **Bias:** b
- **Activation:** nonlinearity $f(\cdot)$

Slide 2: The Three General Layers



Input layer: raw features \mathbf{x}

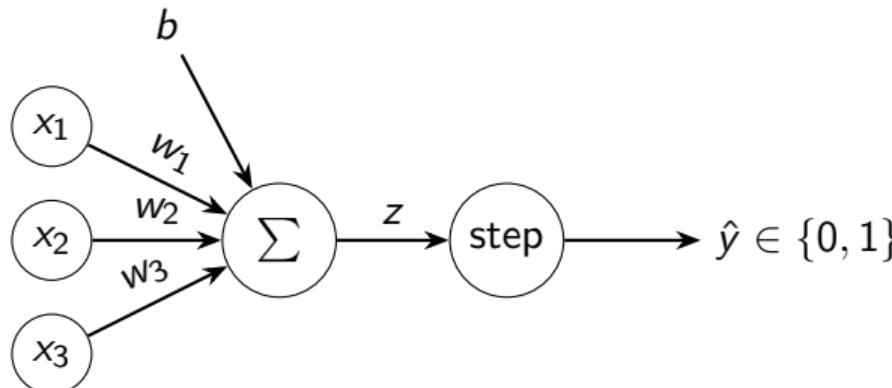
Hidden layers: learn internal representations via nonlinear units

Output layer: task-specific mapping (class scores, regression)

Forward pass:

$$\mathbf{h} = f(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1), \quad \mathbf{y} = g(\mathbf{W}_2 \mathbf{h} + \mathbf{b}_2)$$

Slide 3: Perceptron Visual and Prediction Steps



step 1: inputs are fed to into processor

step 2: perceptron applies weight to estimate output

step 3: perceptron computes error

step 4: perceptron adjusts error by back propagation

step 5: repeat 1-4 until desired model accuracy

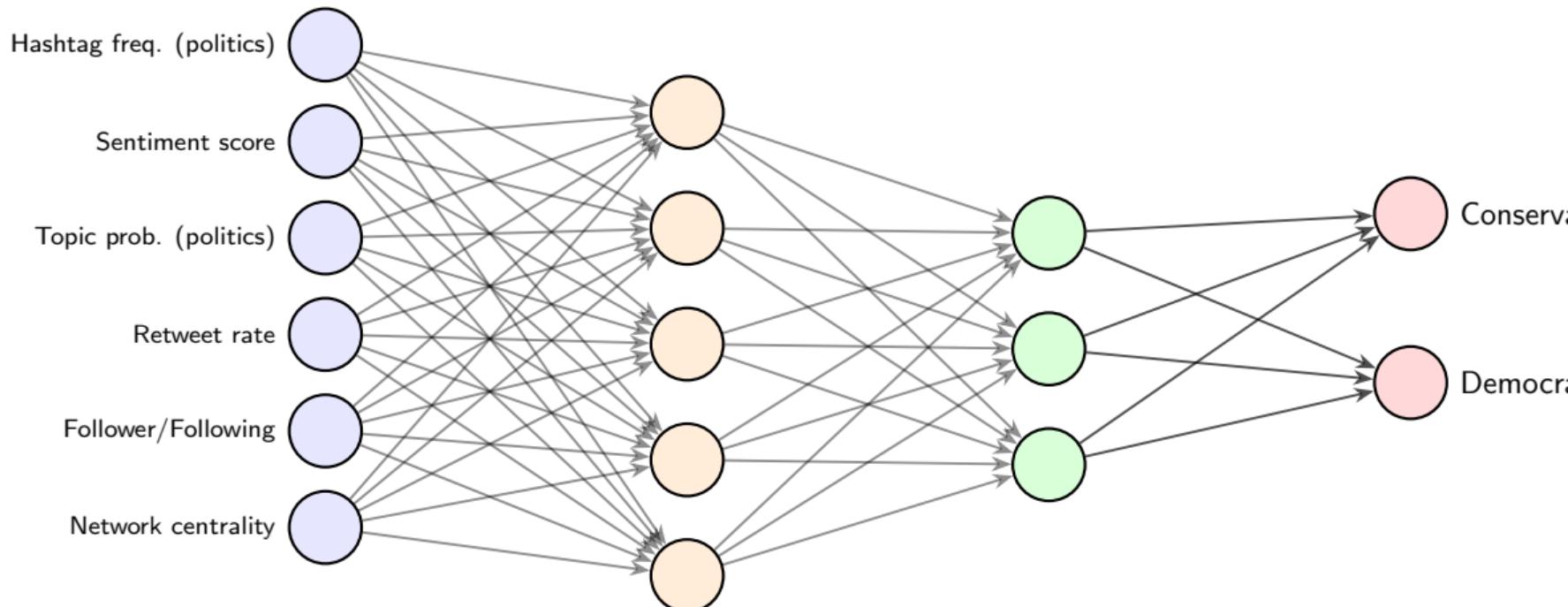
Prediction steps:

- 1 Take inputs \mathbf{x} .
- 2 Compute $z = \mathbf{w}^\top \mathbf{x} + b$.
- 3 Apply step: $\hat{y} = \mathbb{1}[z \geq 0]$.
- 4 Return class label (e.g. 1 = positive, 0 = negative).

Decision boundary:

$$\mathbf{w}^\top \mathbf{x} + b = 0$$

Slide 4: MLP Example Political Influence (Visual Only)



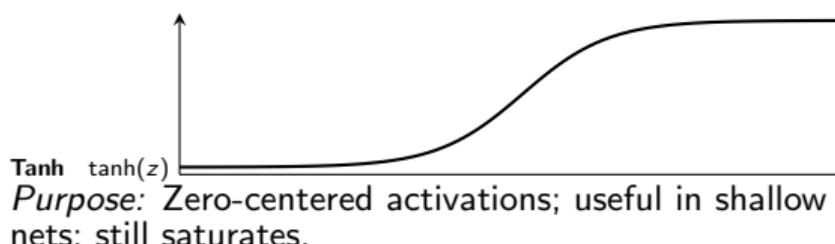
Slide 5: MLP Classification vs Regression (At a Glance)

Aspect	Classification MLP	Regression MLP
Target & Output	Discrete classes; output layer = <i>sigmoid</i> (binary) or <i>softmax</i> (multi-class)	Continuous value(s); output layer = <i>linear (identity)</i>
Loss	Binary/multi-class entropy	cross- MSE / MAE / Huber
Common Metrics	Accuracy, F1, Precision/Recall, AUC	RMSE, MAE, R^2
Typical Features (examples)	Counts/frequencies, TFIDF/topic probs, network stats, categorical dummies, normalized numeric signals	Scaled numerics, engineered ratios, moving averages, lagged values, interaction terms, splines/bins
Output Interpretation	Class probabilities (confidence)	Point estimate (with optional intervals)
Last-layer Activation	Sigmoid / Softmax	Identity

Slide 7: Activation Functions Shapes & When to Use

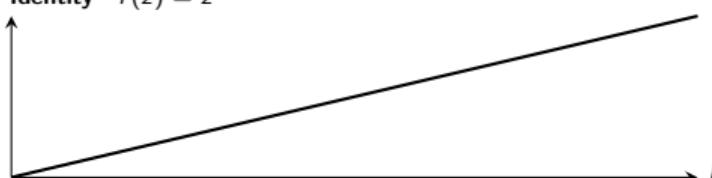
Sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$

Purpose: Map to (0, 1) for probabilities (binary outputs). Can saturate/vanish.



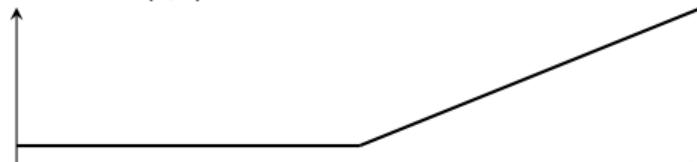
Purpose: Zero-centered activations; useful in shallow nets; still saturates.

Identity $f(z) = z$



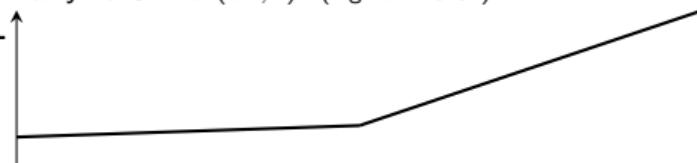
Purpose: Linear output for regression (last layer).

ReLU $\max(0, z)$



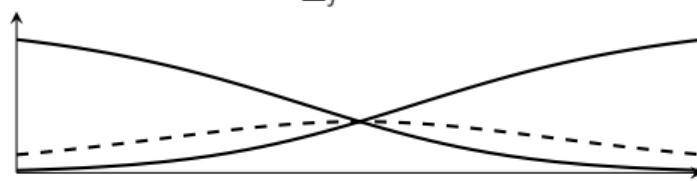
Purpose: Default for hidden layers; sparse/fast; beware dead neurons.

Leaky ReLU $\max(\alpha z, z)$ (e.g. $\alpha = 0.01$)



Purpose: Fix ReLU dead units with small negative slope.

Softmax $\text{softmax}_k(z) = \frac{e^{z_k}}{\sum_j e^{z_j}}$



Purpose: Turn logits into class probabilities (multi-class outputs).

Slide 6: MLP Model Components

Data pipeline

- Preprocess: cleaning, normalization/standardization
- Train/validation/test split; batching and shuffling

Architecture

- Layer sizes, depth, activation functions
- Regularization: dropout, weight decay, batch norm

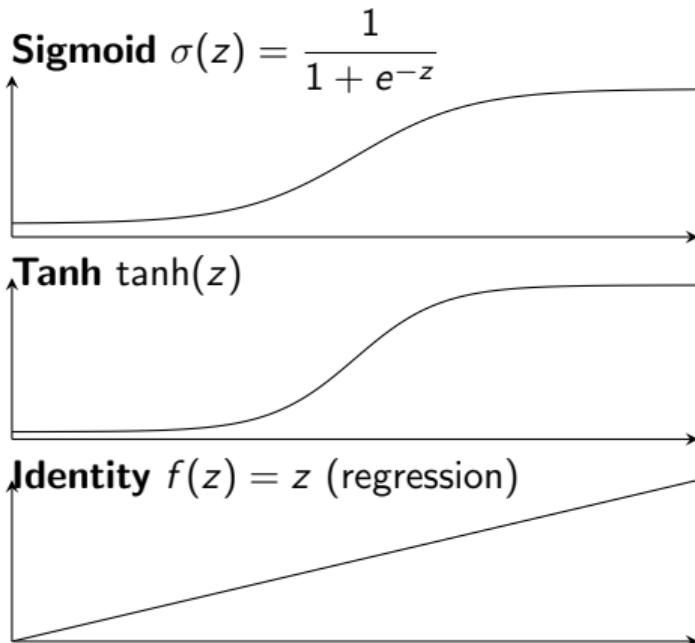
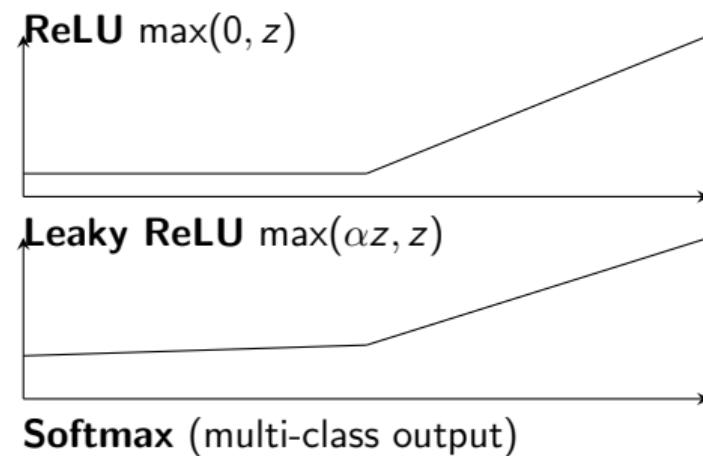
Optimization

- Loss (BCE/MSE), optimizer (SGD/Adam), learning rate schedule
- Early stopping, checkpoints

Evaluation

- Metrics (task-specific), error analysis, robustness checks

Slide 7: Typical Activation Functions (with sketches)



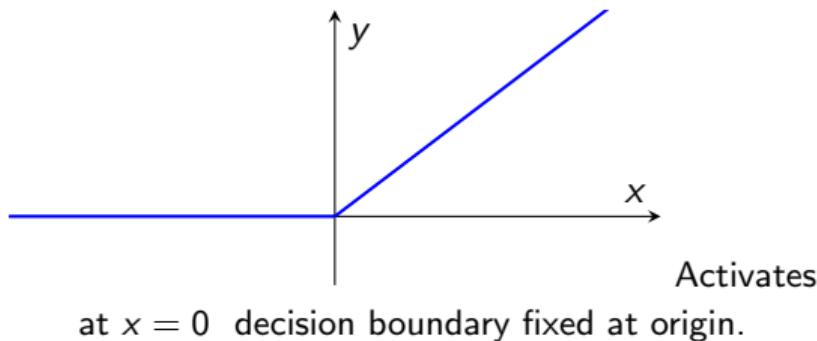
$$\text{softmax}_k(\mathbf{z}) = \frac{e^{z_k}}{\sum_j e^{z_j}}$$

Slide 8: Effect of Bias in a Neuron

Purpose: The bias allows a neuron to shift its activation threshold, enabling more flexible decision boundaries.

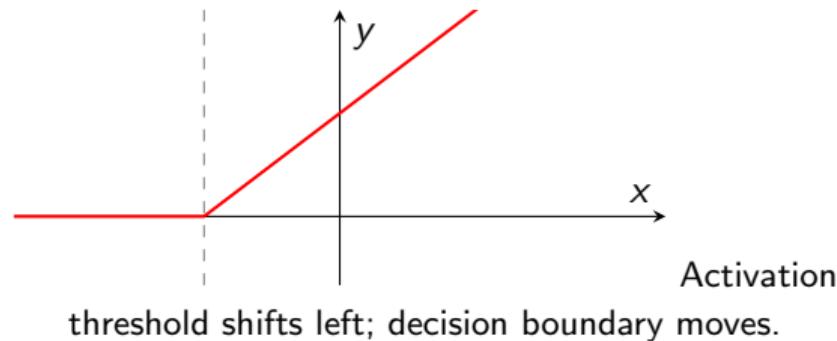
Without Bias: $y = f(wx)$

ReLU: $f(wx)$



With Bias: $y = f(wx + b)$, here $b = +1.5$

ReLU: $f(wx + b)$



Key Takeaway

- **Without bias:** all activations/lines pass through origin limited flexibility.
- **With bias:** neurons can learn thresholds and offsets more expressive model.

Agenda

- ➊ Typical CNN workflow (data features classifier)
- ➋ What is a convolution? Padding, stride, and why odd kernels
- ➌ Max pooling: purpose and effect
- ➍ Build a tiny CNN for MNIST
- ➎ Your code: line-by-line concepts
- ➏ Parameter counts, shapes, and sanity checks
- ➐ (Optional) Feature maps visualization tips

Typical CNN Workflow

- ➊ **Data prep:** load images, normalize to $[0, 1]$, set shape $(H, W, \text{channels})$.
- ➋ **Convolutions:** learn local patterns (edges, strokes) with shared kernels.
- ➌ **Pooling:** downsample, keep strongest activations, add translational tolerance.
- ➍ **Flatten/Global pooling:** convert feature maps to vectors.
- ➎ **Dense + Softmax:** map features to class probabilities.
- ➏ **Train/Evaluate:** choose loss/metrics, iterate for few epochs.

MNIST specifics

- Grayscale digits: $28 \times 28 \times 1$
- 10 classes (0–9)
- Simple dataset: two conv blocks often suffice

What is a Convolution?

- A **kernel** (e.g., 3×3) slides over the image. Each output pixel is a weighted sum of a local neighborhood.
- For one channel: $(I * K)(i,j) = \sum_{u=-r}^r \sum_{v=-r}^r K(u,v) I(i+u, j+v)$, where $r = \frac{k-1}{2}$ for odd k .
- With C input channels, each filter has $k \times k \times C$ weights +1 bias; outputs one feature map. Using F filters yields F maps.

Why odd kernels (3,5,7...)?

They have a **well-defined center**. Padding and alignment stay symmetric; gradients are stable.

Padding and Stride

- **Padding** controls output size:
 - valid: no padding; $H \rightarrow H - k + 1$ (shrinks)
 - same: zero-pad to keep H and W unchanged
- **Stride s** skips positions (e.g., $s = 2$ halves spatial size).
- **Rule of thumb:** start with $k = (3, 3)$, stride = 1, padding=same or pooling for downsampling.

Max Pooling

- **MaxPooling2D(2×2)**: takes the max in each 2×2 window; reduces size by ≈ 2 in H and W .
- Benefits: translation tolerance, fewer parameters, less overfitting, faster compute.
- Analogy (materials): like **coarse-graining** keeping the most prominent response in each small patch.

CNN Layer Pipeline (Simple Explanation)

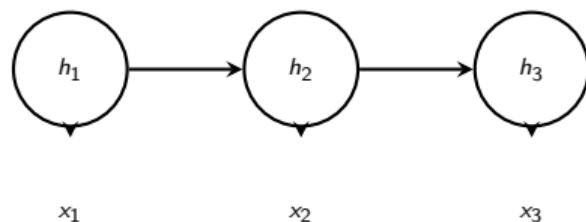
Conv → **BatchNorm** → **Pool** → **Conv** → **Pool** → **Flatten** →
Dense128 → **Dropout** → **Dense10**

- **Convolution (Conv)**: Learns patterns (edges, textures).
- **BatchNorm**: Normalizes activations for stable, faster training.
- **MaxPooling**: Downsamples spatial size (position invariance).
- **Second Conv + Pool**: Deeper, more abstract features.
- **Flatten**: Converts 2D maps to a 1D vector.
- **Dense(128)**: Combines features into meaning.
- **Dropout(0.3)**: Reduces overfitting.
- **Dense(10)**: Softmax classifier (10 classes).

RNN Network: How It Differs from a CNN

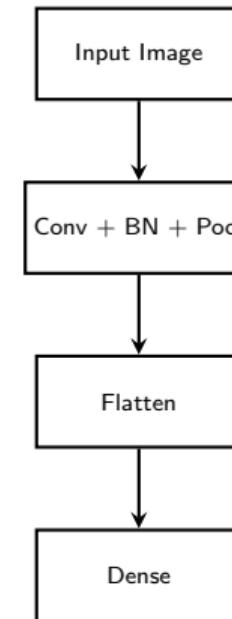
RNN (Recurrent Neural Network)

- Processes data **step-by-step** over time.
- Has **hidden state** that carries memory.
- Good for **time-series, sequences, signals**.
- Output depends on **current input + past inputs**.



CNN (Convolutional Neural Network)

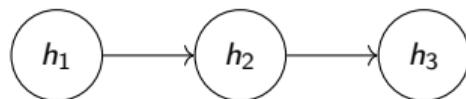
- Processes data **spatially** (images).
- Learns patterns via **filters**.
- Good for **images, microstructures, 2D/3D fields**.
- Output depends on **spatial features**.



Comparison: SimpleRNN vs LSTM vs GRU

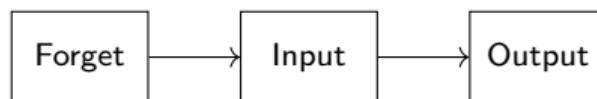
SimpleRNN

- Oldest RNN unit; single state h_t .
- Struggles on long sequences (vanishing gradients).
- Fast and simple.



LSTM

- Two states: hidden h_t and cell c_t .
- Three gates: input, forget, output.
- Best for long-term dependencies; heavier.



GRU

- One state: h_t only.
- Two gates: reset, update.
- Faster than LSTM, similar performance.

Model	States	Gates	Best For
SimpleRNN	h_t	0	short patterns
GRU	h_t	2	medium sequences
LSTM	h_t, c_t	3	long-term patterns

ConvLSTM vs LSTM vs CNN (High-Level Comparison)

Model	Input Type	What It Learns	Use Case
CNN	Images (H, W, C)	Spatial features	Microstructures, images
LSTM	Sequences (T, F)	Temporal patterns	Time-series, signals
ConvLSTM	Image sequences (T, H, W, C)	Spatio-temporal features	Videos, microstructure evolution

CNN

- Processes whole image at once.
- Learns patterns in space.
- Uses Conv filters + Pooling.

LSTM

- Reads one time step at a time.
- Memory via hidden state h_t .
- No spatial structure.

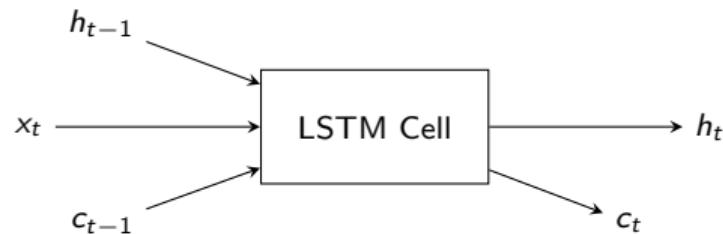
ConvLSTM

- CNN + LSTM ideas combined.
- Learns both space & time.
- Best for evolving microstructures/videos.

LSTM Memory: Hidden State vs Cell State

- **Hidden State (h_t):** short-term memory; used for output.
- **Cell State (c_t):** long-term memory; carried across timesteps.
- Together:

$$(h_t, c_t) = \text{LSTM}(x_t, h_{t-1}, c_{t-1})$$



RNN Input Shapes: 2D vs 3D

MLP / Dense Layers: 2D Input

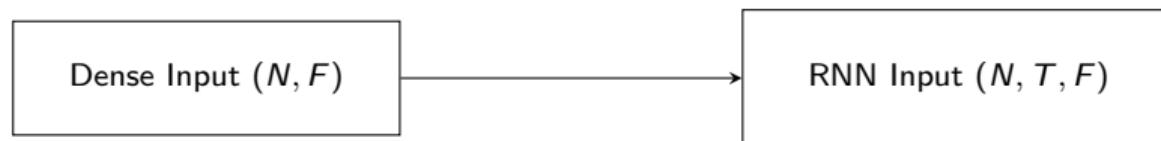
(N, F)

- N = number of samples
- F = number of features
- No time dimension

RNN / LSTM / GRU: 3D Input

(N, T, F)

- T = time steps
- F = features per timestep
- Needed for sequence modeling



Inside an LSTM Cell: Input, Forget, Output Gates

- **Forget Gate f_t :** remove old info.

$$f_t = \sigma(W_f[x_t, h_{t-1}] + b_f)$$

- **Input Gate i_t :** write new info.

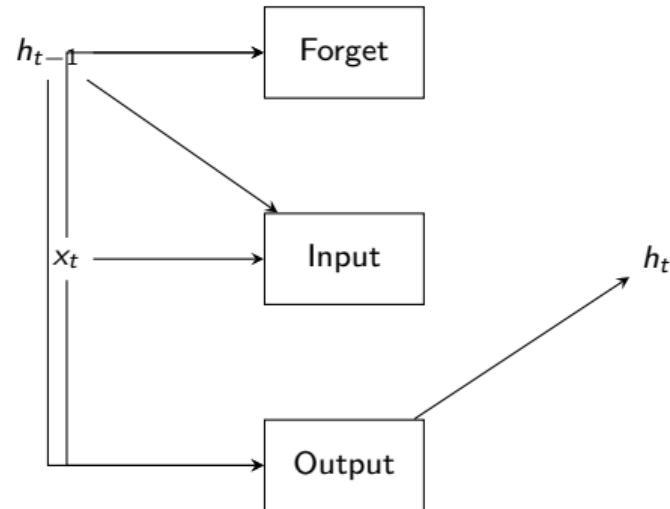
$$i_t = \sigma(W_i[x_t, h_{t-1}] + b_i)$$

- **Output Gate o_t :** expose memory as output.

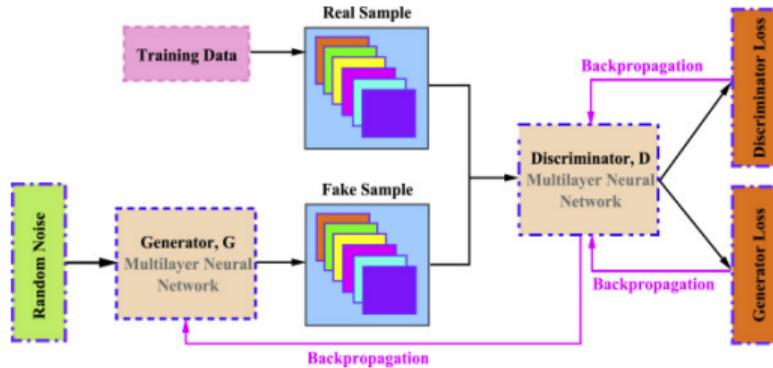
$$o_t = \sigma(W_o[x_t, h_{t-1}] + b_o)$$

- **Cell Update**

$$c_t = f_t \cdot c_{t-1} + i_t \cdot \tilde{c}_t$$



Generative Adversarial Networks (GANs)



- The **Generator (G)** creates new data (e.g., images) from random noise.
- The **Discriminator (D)** evaluates the data, distinguishing between real samples from the training set and fake samples produced by the generator.
- Both networks are trained in an **adversarial** setup:
 - The generator tries to produce data that can fool the discriminator.
 - The discriminator tries to correctly classify real and fake data.
- Training continues until the generator produces data that is **indistinguishable** from real training samples.

Key Components of a GAN

- **Generator**

- Takes a random noise vector (z)
- Learns to produce synthetic samples (fake images)
- Objective: *fool the discriminator*

- **Discriminator**

- Takes real or generated samples
- Outputs probability of being real
- Objective: *correctly classify real vs fake*

- **Adversarial Framework**

- Generator and Discriminator compete
- Training improves both progressively

Generator and Discriminator Architecture

Generator Network

- Input: Noise vector (z), e.g., 100 dimensions
- Hidden Layers: Dense + LeakyReLU activations + Batch Normalization (stabilize training and improve convergence)
- Output Layer: 784 units (flattened 28×28 image)
- Activation: **tanh** (outputs in $[-1, 1]$), suitable for image data

Discriminator Network

- Input: Flattened image (784 dimensions)
- Hidden Layers: Dense + LeakyReLU
- Output Layer: 1 unit (real/fake)
- Activation: **sigmoid** probability of likelihood of input image being real

GAN Training Algorithm

- ① Generate **fake images** using the generator by passing random noise as input.
- ② Sample **real images** by selecting a random batch from the training dataset.
- ③ **Concatenate real and fake images** to form a combined batch for the discriminator.
- ④ **Create discriminator labels:** (Optional)
 - Real images → 0.9 (one-sided label smoothing)
 - Fake images → 0
- ⑤ **Train the discriminator** on the combined batch of real and fake images.
- ⑥ Generate a new batch of **random noise** for the generator.
- ⑦ **Create generator labels:** 1 (real), so the generator attempts to fool the discriminator.
- ⑧ **Train the combined GAN model** (generator + frozen discriminator) using the updated noise and the generator labels.
- ⑨ **Monitor training** by printing discriminator and GAN losses.
- ⑩ Repeat for the specified number of iterations. The generator improves at producing realistic images, while the discriminator gets better at distinguishing real from fake.
- ⑪ **Final Goal:** The generator should create images that are **indistinguishable** from real data.

latent_dim (100) → Generator → data_dim (784)

data_dim (784) → Discriminator → real/fake score